Virtual try-on (VTON), also known as virtual fitting or digital try-on, is the ability to digitally try on clothes and accessories like tops, pants, glasses, hats, and make-up by fitting target products to reference person images/videos. It's gaining wide adoption in e-commerce.
This work aims to address a novel Customized Virtual Try-ON (Cu-VTON) task, enabling the superimposition of a specified garment onto a model that can be customized in terms of appearance, posture, and additional attributes. Compared with traditional VTON task, it enables users to tailor digital avatars to their individual preferences, thereby enhancing the virtual fitting experience with greater flexibility and engagement. To address this task, we introduce a Neural Clothing Tryer (NCT) framework, which exploits the advanced diffusion models equipped with semantic enhancement and controlling modules to better preserve semantic characterization and textural details of the garment and meanwhile facilitating the flexible editing of the model's postures and appearances. Specifically, NCT introduces a semantic-enhanced module to take semantic descriptions of garments and utilizes a visual-language encoder to learn aligned features across modalities. The aligned features are served as condition input to the diffusion model to enhance the preservation of the garment's semantics. Then, a semantic controlling module is designed to take the garment image, tailored posture image, and semantic description as input to maintain garment details while simultaneously editing model postures, expressions, and various attributes. Extensive experiments on the open available benchmark demonstrate the superior performance of the proposed NCT framework.
Recent advances in diffusion models have significantly elevated the visual fidelity of Virtual Try-On (VTON) systems, yet reliable evaluation remains a persistent bottleneck. Traditional metrics struggle to quantify fine-grained texture details and semantic consistency, while existing datasets fail to meet commercial standards in scale and diversity. We present OpenVTON-Bench, a large-scale benchmark comprising approximately 100K high-resolution image pairs (up to $1536 \times 1536$). The dataset is constructed using DINOv3-based hierarchical clustering for semantically balanced sampling and Gemini-powered dense captioning, ensuring a uniform distribution across 20 fine-grained garment categories. To support reliable evaluation, we propose a multi-modal protocol that measures VTON quality along five interpretable dimensions: background consistency, identity fidelity, texture fidelity, shape plausibility, and overall realism. The protocol integrates VLM-based semantic reasoning with a novel Multi-Scale Representation Metric based on SAM3 segmentation and morphological erosion, enabling the separation of boundary alignment errors from internal texture artifacts. Experimental results show strong agreement with human judgments (Kendall's $τ$ of 0.833 vs. 0.611 for SSIM), establishing a robust benchmark for VTON evaluation.
Virtual try-on systems allow users to interactively try different products within VR scenarios. However, most existing VTON methods operate only on predefined eyewear templates and lack support for fine-grained, user-driven customization. While GlassesGAN enables personalized 2D eyewear design, its capability remains limited to 2D image generation. Motivated by the success of 3D Gaussian Blendshapes in head reconstruction, we integrate these two techniques and propose GlassesGB, a framework that supports customizable eyewear generation for 3D head avatars. GlassesGB effectively bridges 2D generative customization with 3D head avatar rendering, addressing the challenge in achieving personalized eyewear design for VR applications. The implementation code is available at https://ruiyangju.github.io/GlassesGB.
High-quality 3D garment reconstruction plays a crucial role in mitigating the sim-to-real gap in applications such as digital avatars, virtual try-on and robotic manipulation. However, existing garment reconstruction methods typically rely on unstructured representations, such as 3D Gaussian Splats, struggling to provide accurate reconstructions of garment topology and sewing structures. As a result, the reconstructed outputs are often unsuitable for high-fidelity physical simulation. We propose ReWeaver, a novel framework for topology-accurate 3D garment and sewing pattern reconstruction from sparse multi-view RGB images. Given as few as four input views, ReWeaver predicts seams and panels as well as their connectivities in both the 2D UV space and the 3D space. The predicted seams and panels align precisely with the multi-view images, yielding structured 2D--3D garment representations suitable for 3D perception, high-fidelity physical simulation, and robotic manipulation. To enable effective training, we construct a large-scale dataset GCD-TS, comprising multi-view RGB images, 3D garment geometries, textured human body meshes and annotated sewing patterns. The dataset contains over 100,000 synthetic samples covering a wide range of complex geometries and topologies. Extensive experiments show that ReWeaver consistently outperforms existing methods in terms of topology accuracy, geometry alignment and seam-panel consistency.
With the rapid advancement of generative AI, virtual try-on (VTON) systems are becoming increasingly common in e-commerce and digital entertainment. However, the growing realism of AI-generated try-on content raises pressing concerns about authenticity and responsible use. To address this, we present VTONGuard, a large-scale benchmark dataset containing over 775,000 real and synthetic try-on images. The dataset covers diverse real-world conditions, including variations in pose, background, and garment styles, and provides both authentic and manipulated examples. Based on this benchmark, we conduct a systematic evaluation of multiple detection paradigms under unified training and testing protocols. Our results reveal each method's strengths and weaknesses and highlight the persistent challenge of cross-paradigm generalization. To further advance detection, we design a multi-task framework that integrates auxiliary segmentation to enhance boundary-aware feature learning, achieving the best overall performance on VTONGuard. We expect this benchmark to enable fair comparisons, facilitate the development of more robust detection models, and promote the safe and responsible deployment of VTON technologies in practice.
Existing Image-based virtual try-on (VTON) methods primarily focus on single-layer or multi-garment VTON, neglecting multi-layer VTON (ML-VTON), which involves dressing multiple layers of garments onto the human body with realistic deformation and layering to generate visually plausible outcomes. The main challenge lies in accurately modeling occlusion relationships between inner and outer garments to reduce interference from redundant inner garment features. To address this, we propose GO-MLVTON, the first multi-layer VTON method, introducing the Garment Occlusion Learning module to learn occlusion relationships and the StableDiffusion-based Garment Morphing & Fitting module to deform and fit garments onto the human body, producing high-quality multi-layer try-on results. Additionally, we present the MLG dataset for this task and propose a new metric named Layered Appearance Coherence Difference (LACD) for evaluation. Extensive experiments demonstrate the state-of-the-art performance of GO-MLVTON. Project page: https://upyuyang.github.io/go-mlvton/.
Garment simulation is fundamental to various applications in computer vision and graphics, from virtual try-on to digital human modelling. However, conventional physics-based methods remain computationally expensive, hindering their application in time-sensitive scenarios. While graph neural networks (GNNs) offer promising acceleration, existing approaches exhibit poor cross-resolution generalisation, demonstrating significant performance degradation on higher-resolution meshes beyond the training distribution. This stems from two key factors: (1) existing GNNs employ fixed message-passing depth that fails to adapt information aggregation to mesh density variation, and (2) vertex-wise displacement magnitudes are inherently resolution-dependent in garment simulation. To address these issues, we introduce Propagation-before-Update Graph Network (Pb4U-GNet), a resolution-adaptive framework that decouples message propagation from feature updates. Pb4U-GNet incorporates two key mechanisms: (1) dynamic propagation depth control, adjusting message-passing iterations based on mesh resolution, and (2) geometry-aware update scaling, which scales predictions according to local mesh characteristics. Extensive experiments show that even trained solely on low-resolution meshes, Pb4U-GNet exhibits strong generalisability across diverse mesh resolutions, addressing a fundamental challenge in neural garment simulation.
With the rapid development of e-commerce and digital fashion, image-based virtual try-on (VTON) has attracted increasing attention. However, existing VTON models often suffer from artifacts such as garment distortion and body inconsistency, highlighting the need for reliable quality evaluation of VTON-generated images. To this end, we construct VTONQA, the first multi-dimensional quality assessment dataset specifically designed for VTON, which contains 8,132 images generated by 11 representative VTON models, along with 24,396 mean opinion scores (MOSs) across three evaluation dimensions (i.e., clothing fit, body compatibility, and overall quality). Based on VTONQA, we benchmark both VTON models and a diverse set of image quality assessment (IQA) metrics, revealing the limitations of existing methods and highlighting the value of the proposed dataset. We believe that the VTONQA dataset and corresponding benchmarks will provide a solid foundation for perceptually aligned evaluation, benefiting both the development of quality assessment methods and the advancement of VTON models.
We propose a novel framework for decomposing arbitrarily posed humans into animatable multi-layered 3D human avatars, separating the body and garments. Conventional single-layer reconstruction methods lock clothing to one identity, while prior multi-layer approaches struggle with occluded regions. We overcome both limitations by encoding each layer as a set of 2D Gaussians for accurate geometry and photorealistic rendering, and inpainting hidden regions with a pretrained 2D diffusion model via score-distillation sampling (SDS). Our three-stage training strategy first reconstructs the coarse canonical garment via single-layer reconstruction, followed by multi-layer training to jointly recover the inner-layer body and outer-layer garment details. Experiments on two 3D human benchmark datasets (4D-Dress, Thuman2.0) show that our approach achieves better rendering quality and layer decomposition and recomposition than the previous state-of-the-art, enabling realistic virtual try-on under novel viewpoints and poses, and advancing practical creation of high-fidelity 3D human assets for immersive applications. Our code is available at https://github.com/RockyXu66/LayerGS
Virtual Try-Off (VTOFF) is a challenging multimodal image generation task that aims to synthesize high-fidelity flat-lay garments under complex geometric deformation and rich high-frequency textures. Existing methods often rely on lightweight modules for fast feature extraction, which struggles to preserve structured patterns and fine-grained details, leading to texture attenuation during generation.To address these issues, we propose AlignVTOFF, a novel parallel U-Net framework built upon a Reference U-Net and Texture-Spatial Feature Alignment (TSFA). The Reference U-Net performs multi-scale feature extraction and enhances geometric fidelity, enabling robust modeling of deformation while retaining complex structured patterns. TSFA then injects the reference garment features into a frozen denoising U-Net via a hybrid attention design, consisting of a trainable cross-attention module and a frozen self-attention module. This design explicitly aligns texture and spatial cues and alleviates the loss of high-frequency information during the denoising process.Extensive experiments across multiple settings demonstrate that AlignVTOFF consistently outperforms state-of-the-art methods, producing flat-lay garment results with improved structural realism and high-frequency detail fidelity.